
The Hidden Benefits of Limited Communication
and Slow Sensing in Collective Monitoring of

Dynamic Environments

Till Aust1,2, Mohamed S. Talamali3, Marco Dorigo1, Heiko Hamann2, and
Andreagiovanni Reina1
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Abstract. Most of our experiences, as well as our intuition, are usu-
ally built on a linear understanding of systems and processes. Complex
systems in general, and more specifically swarm robotics in this context,
leverage non-linear effects to self-organize and to ensure that ‘more is dif-
ferent’. In previous work, the non-linear and therefore counter-intuitive
effect of ‘less is more’ was shown for a site-selection swarm scenario. Al-
though it seems intuitive that being able to communicate over longer
distances should be beneficial, swarms were found to sometimes profit
from communication limitations. Here, we build on this work and show
the same effect for the collective perception scenario in a dynamic envi-
ronment. We also find an additional effect that we call ‘slower is faster’:
in certain situations, swarms benefit from sampling their environment
less frequently. Our findings are supported by an intensive empirical ap-
proach and a mean-field model. All our experimental work is based on
simulations using the ARGoS simulator extended with a simulator of the
smart environment for the Kilobot robot called Kilogrid.

1 Introduction

In our recent research about information spreading in groups of individuals [30],
we discovered a counter-intuitive mechanism by which reducing interactions be-
tween the individuals makes the group more capable to adopt new better opin-
ions. This effect, that we call less is more, manifests when groups need to make
consensus decisions and individuals follow a relatively simple voting behavior.
Such conditions can be particularly relevant for the design of algorithms for
swarms of minimalistic robots that make best-of-n decisions [30]. Such algo-
rithms are based on opinion dynamics models, in which every robot has an
opinion about the option it currently considers the best (among n alternatives)
and sends messages to neighboring robots to recruit them on that option [34].
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In this study, we confirm the generality of our previous finding [30] by repro-
ducing the less is more effect (LIME) in a different scenario: collective perception
of an environmental feature, the so-called environmental element, in a dynamic
environment. By studying this new scenario, we can control the speed of robot
recruitment, that is the key parameter to trigger the LIME. Controlling this
parameter was not possible in the previous study of Talamali et al. [30] as the
recruitment speed was constrained by robot travel times to specific locations.
These times also had high variance and depended, for example, on traffic con-
gestion and robot density. The new scenario allows for a simplified analysis. Our
results confirm and clarify the mechanisms. More importantly, we found a new
surprising effect that was not reported earlier in this type of systems: the slower
is faster effect [9, 25, 27, 26, 18] (SIFE). To adapt faster, recruited robots must
be slower in disseminating their opinions and recruiting other robots. This is
a second surprising and counter-intuitive mechanism of this simple voting sys-
tem. The SIFE occurs when individuals are sparsely connected and make noisy
estimates—two conditions commonly found in swarm robotics [10].

With this paper, we also release open-source code [2] supporting realistic
simulations of the Kilogrid platform [1] (technology for Kilobots [21] to operate
in smart environments) in ARGoS [15]. This simulation code, combined with
the ARGoS Kilobot plugin [14], allows the use of identical code in simulation
and reality (both for Kilobots and Kilogrid). Despite the limited adoption of the
Kilogrid in other research labs than IRIDIA (ULB), we believe that supporting
realistic physics-based simulations can help spreading the technology and en-
courage collaborations between laboratories with and without such equipment.

2 Collective Perception in a Dynamic Environment

In this paper, the task of the robot swarm is to make a consensus decision in favor
of the predominant element of the environment [33]. We assume that the robots
can individually estimate each element concentration (i.e., an element’s relative
frequency in the environment) to form their opinion which they share with each
other. While individual estimates are noisy, the swarm collectively filters noise
and converges to an accurate collective decision [33]. Individual estimation er-
rors can be caused, for example, by simple error-prone sensing devices (readings
distant from the ground truth, e.g., [13, 11]), spatial correlations (clustered in-
formation in localised areas rather than uniformly in the environment, e.g., [3, 4,
29]), and limited sensing range. Our simulations allow us to control sources and
levels of sampling errors as well as to disentangle the impact of sampling errors
from other system dynamics of interest (e.g., recruitment time).

We conveniently model the collective perception problem in a similar way as
done previously [33]. The to-be-estimated environmental element is the predomi-
nant color of the ground which is comprised of squared tiles (5 cm2). We consider
tiles with n = 2 colors: blue and yellow (see Fig. 1a)4. The difficulty of the

4 The current geopolitical situation motivated our choice of tile color .
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Fig. 1. (a) Collective perception scenario for the simulated Kilogrid in ARGoS (simula-
tion code, see [2]), swarm of N = 50 Kilobots (small black circles); (b) robots controlled
by a finite state machine with n+1 states (here n = 2); transitions: self-sourced (dashed
arrows) or social (solid arrows) evidence; uncommitted→commit through (A) discov-
ery or (B) recruitment; committed robots update their state by: (C) cross-inhibition,
(D) direct switching, or (E) stay; (c) once recruited, robots gradually increase commu-
nication probability w for sampling time τs = s δs, s samples every δs seconds; (d) focal
Kilogrid module receives Kilobot message and sends to all cells within communication
range (proportional to parameter c; communication range rc, c = {2, 3, 4, 5}); (e) robot-
to-robot communication is virtualised using Kilogrid.

perception problem κ ∈ [0, 1] is determined by the ratio between the concentra-
tion of tiles in the two colors: κ = qb/qy where qb and qy are the concentrations
of blue and yellow tiles, respectively. Without loss of generality we assume that
yellow is the predominant color in all our experiments, qy > qb. The con-
centration of blue/yellow tiles corresponds to the number of blue/yellow tiles
divided by the total number of tiles in the environment. The tiles are uniformly
randomly distributed, hence reducing spatial correlations. However, spatial cor-
relations exist within the area of a single tile. Indeed, taking several samples
from the same tile results in biased measurements (see Sec. 5.2).

We consider a virtual dynamic scenario. In all our experiments, the most
frequent color is yellow . However, the robot swarm is initialized to a state of full
(100%) commitment in favor of blue with every robot holding an estimate qb =
0.8. This increases the task difficulty and can be considered a sudden change of
colors from blue to yellow ( → ) that happens right at the moment when we
start our simulations. In the next section, we describe how robots reassess the
environment’s state and reconsider their opinion.

3 A Minimalist behavior for a Rich Collective Response

The robots have minimal requirements in terms of memory, computation, sens-
ing, and communication capabilities. Compared with previous work that in-
vestigated decentralized consensus decision making in the collective perception
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scenario, our algorithm has the fewest requirements, in line with our quest for
minimalism. Different from previous work that required the storage of all avail-
able alternatives and all received messages [23, 24, 4], here the robots only store
the information about a single opinion (i.e., the color considered predominant
and its estimated concentration), the last received message from a neighbor, and
a temporary variable to estimate possible environmental changes. Different from
previous work requiring more advanced computation based on Bayesian infer-
ence [23, 24, 8, 7] or fusion operators from epistemic logic [4], our robot behav-
ior is defined by a small finite state machine with reactive transitions. Different
from previous work that required sensors capable of measuring a numerical value
of the predominant element, such as an option quality, at every measurement
step [23, 24, 7], here the robot can only sense the presence ( ) or absence (not
) of an element at a time. Different from previous work requiring maintenance

of shared collective knowledge through rich inter-robot communication [28, 29],
here the robots send simple messages with a few bits of information, only in-
dicating their preferred element (i.e., their chosen color, for n = 2 that is one
bit of information). Other works in collective perception that are comparable to
ours in their simplicity of individual robot requirements are Valentini et al. [33]
and Zakir et al. [35]. We extend previous analyzes by considering a dynamic
environment which has only been considered in a few consensus decision making
studies for the site selection scenario [16, 17, 6, 30], while here we consider the
collective perception scenario.

Despite the minimalist robot control algorithm and the robots’ noisy mea-
surements, the swarm is able to collectively gather and process the data to make
accurate consensus decisions (picking the dominant color). The robot’s control
algorithm is based on simple reactive rules, relies on limited memory, and can be
described as four routines that are executed in parallel: motion, opinion update,
sampling, and broadcasting.

The motion routine is independent of the other parts of the robot’s be-
havior. The robot’s motion is neither influenced by its opinion nor by social
or environmental inputs. The motion routine is a random walk implemented as
a random waypoint mobility model [5, 30]. However, it could be substituted by
any other algorithm implementing random diffusion. Using the random waypoint
model, robots select random positions as their destinations. Once the destina-
tion is reached, robots select the next random destination. Robots avoid collisions
with surrounding walls by selecting random destinations that are at least three
robot-body lengths (approximately 10 cm) away from walls. As robot’s motion
is subject to noise, the robot can still approach walls. Once it gets at a distance
smaller than three robot-body lengths from any wall, the robot starts a wall
avoidance manoeuvre by rotating away from the wall and moving straight. The
robots have no proximity sensing, therefore they do not implement any obsta-
cle avoidance to prevent collisions with each other. To avoid robots remaining
stuck in traffic jams caused by groups of robots moving in opposite directions
(or robots not moving due to malfunctioning motors), robots select new random
destinations if the previous destination was not reached within two minutes.
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The opinion update routine is essential to solve the collective percep-
tion task because it determines how robots change their opinions and, hence,
defines the collective behavior. Robots change their opinion so that a large ma-
jority of the swarm reaches an agreement on the predominant color. While we
present this routine for n = 2 colors, it does not require any changes to scale to
numbers n > 2. Robots update their states every τu = 2 s following the cross-
inhibition update shown in Fig. 1b. Robots can be in n+1 possible opinion states;
in the investigated case of n = 2 colors they can be committed to blue, commit-
ted to yellow, or uncommitted. Transitions between states are triggered by new
self-sourced or social evidence. Self-sourced evidence (dashed arrows in Fig. 1b)
is available when, after a period of length τu, the robot completed sampling a
color that is both different from and better than its current opinion (in case of
uncommitted robots, any concentration estimate is considered as better). Hence,
self-sourced evidence corresponds to discovering in the last τu a color that seems
more frequent than the color of its current opinion. Social evidence (solid arrows
in Fig. 1b) is available when after a period of length τu the robot received a mes-
sage from a neighbor committed to a different color (if multiple messages have
been received, only the most recent stays in memory). If both self-sourced and
social evidence are available, the robot randomly selects one of the two, discard-
ing the other. The new evidence triggers a state change: (a) committed robots
with new social evidence become uncommitted—a cross-inhibition transition;
(b) any robot with new self-sourced evidence becomes committed to the color
corresponding to the new evidence—a discovery transition; (c) uncommitted
robots with new social evidence, become committed as per the new evidence—a
recruitment transition.

The sampling routine controls how information about the concentration of
one element is collected from the environment. The robot continuously repeats
sampling in cycles of collecting s samples. Each sample is a binary value indicat-
ing presence (1) or absence (0) of the environmental element of interest. Here,
robots sample whether the color at their position is of a given color. The concen-
tration estimate q̂i is the proportion between the number of samples s+i in which
the element was present and the total number of samples s: q̂i = s+i /s. A new
sampling cycle starts when the previous cycle has collected s samples, or when
the robot changes opinion through social evidence. When the robot completes a
sampling cycle or becomes uncommitted, it determines the new to-be-sampled
color randomly. Here, the robot selects the color of the ground beneath itself.
The random selection of the color to sample allows the robot either to update the
color concentration estimate when it samples its commitment color, or to gather
potential self-sourced evidence when it samples a different color. Instead, when
a robot is recruited and commits to a new opinion i, it immediately starts to
sample i to obtain the information needed to regulate its messaging frequency
(weighted voting, as described in the broadcasting routine). This means that
once a robot is recruited to i, it cannot instantaneously recruit other robots
to i but a minimum amount of time is required to gather information about i
first. The mathematical analysis of [30] showed that having this temporal de-
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lay between change of opinion through recruitment and recruitment of other
robots—the sampling time τs—is the key mechanism that leads to the LIME.
Therefore, the sampling time τs is the control parameter of this study and it
corresponds to τs = s δs, where δs is the time between two samples. As analyzed
in Sec. 5.2, the sampling parameters s and δs are also linked to the estimation
noise and have a determining impact on the collective dynamics.

The broadcasting routine implements a continuous ‘narrowcast’ of re-
cruitment messages, that is, a broadcast to all robots within communication
range rc (i.e., neighbors). The robot scales its frequency of communication pro-
portionally to the estimated concentration of the environmental element. The
higher the estimated concentration of i is, the more recruitment messages for
color i the robot sends. The robot sends a message with a frequency of w/τm Hz
where 1/τm = 2Hz is the maximum communication frequency of our robots and
w = min(2q̂i, 1) is the concentration weight for color i. We multiply by two (2q̂i)
because we need to find the predominant element and any concentration > 50%
represents the absolute majority. For lower concentrations, w scales linearly be-
tween 0 and 1. While in case of n = 2 a concentration < 50% indicates predom-
inance of the other color, this does not generalize to n > 2 and therefore we do
not consider this deductive mechanism. A newly recruited robot does not have a
concentration estimate yet. It gradually increments its communication frequency
as it collects samples (see Fig. 1c). It computes w = min(2q̂i, 1) using q̂i = s+i /s
even if the collected samples are less than s. This mechanism helps avoiding
situations of vocal minorities, that is, the situations in which a large propor-
tion of the population changes their commitment and only a small proportion of
robots communicates while the majority remain silent. In our implementation,
just-recruited robots are not silent, yet less vocal. Uncommitted robots do not
communicate until they get recruited or make a discovery transition.

4 Simulated Kilobots and Kilogrid

For our experiments, we use Kilobots which are cheap, simple, and small robots
widely employed in swarm robotics [21, 22, 31, 20]. By regulating the frequency of
two vibration motors, the Kilobots move on a flat surface at speeds of about 1 cm/s
in roughly straight motion and rotate at the spot at about 45

◦
/s. The Kilobot has

a diameter of 3.3 cm, can display its internal state through a colored-LED, and
can communicate with other robots and other devices through an infrared (IR)
transceiver. The range of communication varies depending on lighting conditions
and ground material [12]; in ideal conditions rc ≈ 10 cm. The Kilobot’s control
loop is executed at approximately 32Hz.

Given these limited robot capabilities, researchers working with Kilobots
have developed systems of augmented reality to allow Kilobots to interact with
virtual environments [1, 19, 32]. We employ the Kilogrid system [32], which is
a lattice of square electronic modules covered with a transparent glass. The
Kilobots can move on the Kilogrid’s glass surface while communicating with
static modules beneath which are equipped with the same IR transceivers as the
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Kilobots. Each 10× 10 cm2 module is composed of four smaller 5× 5 cm2 square
cells. In our setup, we use a 1× 2m2 rectangular Kilogrid composed of 10× 20
modules for a total of 800 cells.

The collective perception scenario is implemented by assigning a color to
each internal Kilogrid cell. In our environment there are 684 colored internal
tiles and 116 non-colored tiles at the boundaries. Cells adjacent to walls are
colorless because robots do wall avoidance when under two tiles away from any
wall and should rarely visit these areas. All cells continuously signal their color
to human observers using colored-LED and to the Kilobots via IR messages. The
Kilogrid provides more information to the Kilobots to improve their movement
which is subject to noise and unreliable [14]. The cell’s IR messages contain the
color, the cell’s coordinates (x, y in the 20× 40 Kilogrid’s plane) and a wall flag.
The coordinates are used to implement the above mentioned random waypoint
mobility model [5, 30] to let robots effectively diffuse in space. The 0/1 wall flag
indicates a wall at distance <10 cm and triggers wall avoidance.

The Kilogrid also allows extending the robot-to-robot communication range
which is otherwise physically limited to rc ≈ 10 cm. Our robots communicate
with each other via the Kilogrid. They send their IR messages to the cell beneath
them. The cell sends the message to all the cells at an Euclidean distance < c
resulting in an effective range of rc ≈ 2.5 + 5(c− 1) cm (see Figs. 1d, e). Hence,
we can test communication ranges beyond the Kilobot’s limitations.

In this paper, we run experiments in simulation using an available ARGoS
plugin that allows to run accurate simulations with the Kilobots [14], and a
second ARGoS plugin for the simulation of the Kilogrid that we specifically
developed for this study (open-source code available at [2]). The Kilogrid is
programmed via code executed on each module. To simulate the Kilogrid, we
developed an ARGoS loop function that runs the control cycle of all Kilogrid
modules in each simulation step. Module-to-module communication is done by
CAN bus, module-to-robot through IR messages, and modules can send data
to the PC control station (e.g., log files). Following the ARGoS paradigm of
using identical code for simulations and real-world experiments, we developed
a simulated module interface that provides all functions available on the real
Kilogrid module controller. The code for simulated and real modules has only
minimal differences (documented in the code repository) that have been included
to optimise simulation speed.

5 Results: Less is More & Slower is Faster

We test the ability of the robot swarm to adapt to sudden environmental changes.
All robots start committed to blue (predominant color before the change) with
a high estimate qb = 0.8, and hence w = 1. We assume the change → happens
right at the beginning of our experiment, which is initialized with an environment
with more yellow than blue tiles. The swarm is expected to perceive the change,
reconsider its previous decision, and converge to a large majority (consensus de-
cision) in favor of yellow. We consider the swarm capable to adapt to the change
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when over a 5 minutes interval the mean of the number of robots committed
to yellow is greater than 70% of the swarm size. In this way, we avoid to count
short-lived random fluctuations as successful adaptations. Instead we want the
swarm to reach a stable majority. The adaptation time is measured as the time
it takes for at least 70% of the robots in the swarm to become committed to
yellow at the beginning of the 5 minutes interval. We define “adaptation proba-
bility” as the proportion of simulation runs in which the swarm has successfully
adapted. We run 30 simulations per condition.

5.1 When Recruitment is Slow do not be too Social, Less is More

We fix sample number s = 15 and time between two samples δs = 4 s, and test
different communication ranges 2.5 cm ≤ rc ≤ 225 cm for problem difficulties κ ∈
{0.7, 0.8, 0.9}. Hence, once recruited, robots broadcast with low probability the
new color until they complete the sampling cycle which lasts τs = s δs = 60 s
(see broadcast frequency diagram in Fig. 1c). Because the positive feedback (i.e.,
recruited robots recruit other robots) is slow, we expect to observe similar dy-
namics as reported in [30]. Fig. 2a shows that also here we have the LIME, where
more social interactions (large rc) diminish the swarm’s ability to adapt. There-
fore, we confirm the predictions of [30] and show this is a general effect that can
take place in scenarios different from collective site selection, where it was first
observed. This counter-intuitive effect can be explained via the social impact of
committed subpopulations of unbalanced sizes. A large majority is able to re-
peatedly mute minorities that make temporary discoveries of alternative options.
The minority’s opinion is slow to gain traction in the population as new recruits
are slow in becoming vocal and are quickly reverted to the majority’s opinion.
When the communication range is large, or equivalently when the robot density
is high, any minority is in contact with the large majority at all time. Instead,
sparse connectivity, due to a small communication range or a low robot density,
reduces the importance of subpopulation sizes. Interactions are sporadic (often
limited to pairs) and the collective dynamics are governed by opinion quality
(encoded via messaging frequency).

Unlike the site selection scenario [30], where the positive feedback delay was
hard to manipulate, here the delay consists in the sampling time τs = s δs and
can easily be studied. We investigate how the collective performance varies for
different sampling times and for different levels of robot connectivity. We study
sampling time by varying values s as well as δs, and robot connectivity by vary-
ing both communication range and robot density (proportional to swarm size as
environment size is constant). Figs 2b-d show that the LIME on robot connectiv-
ity is present in parameter regions of slow recruitment (top part of the plots) and
gradually vanishes when recruitment is quick. This result is in agreement with
theory, as quick recruitment enables positive feedback cascades and allows well
connected swarms to react fast to environmental changes. While Figs. 2b-d only
show results for problem difficulty κ = 0.9, we observed qualitatively equivalent
dynamics for any κ tested.
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We model the collective adaptation dynamics using a mean-field model built
as a system of ODEs that describes the proportion of robots in each opinion
state [30]. Let xi be the proportion of robots committed to the environmental
element i and let xu be the proportion of uncommitted robots, with xu+

∑
i xi =

1. The opinion dynamics model reads as

ẋi =
qi
τs
xu︸ ︷︷ ︸
A

+
1

τs

k r2c N xu

1 + k r2c N xu
qi xi︸ ︷︷ ︸

B

− k r2c N xi

1 + k r2c N xi

∑
j ̸=i

qj xj︸ ︷︷ ︸
C

+
qi
τs

∑
j ̸=i

[xj H(q̂i − q̂j)]−
xi

τs

∑
j ̸=i

[qj H(q̂j − q̂i)]︸ ︷︷ ︸
D

,

(1)

whereH is the unit step function, and k is a proportionality factor to fit the ODE
system to the observed dynamics of the simulated swarm robotics system (e.g.,
speed of robots, communication frequency, robots’ opinion update time). The
four terms on the rhs of Eq. (1) model discovery, recruitment, cross-inhibition,
and direct switching transitions (capital letters below each term correspond to
the transitions depicted in Fig. 1b, for more details see [30]).

The model of Eq. (1), as previously published [30], describes ‘slow’ (i.e., not
instantaneous) recruitment through the Holling function type 2. As the sam-
pling time τs is decreased, the recruitment becomes quicker and the effect of
the Holling function reduces. As a result the recruitment rate becomes approxi-
mately linear on neighborhood size. Through bifurcation analysis in the case of
n = 2, we identify two states of the system as a function of the communication
range (in Fig. 2e), or equivalently of the swarm density (not shown). Prior to the
subcritical bifurcation (low rc or N), the system has a single stable equilibrium
that represents a consensus decision for the color with the highest concentration,
therefore, in this parameter range adaptation is guaranteed. After the bifurca-
tion (high rc or N), a second stable equilibrium appears representing a consensus
decision for the inferior alternative. In this parameter range, the swarm when
initialized at equilibrium for the inferior color can only switch between the co-
existing attractors through high random fluctuations and the swarm may take
longer to adapt. The bifurcation analysis of Fig. 2e shows results that are quali-
tatively equivalent to the dynamics observed in simulations (see Fig. 2g).

5.2 With Noisy Estimates and Few neighbors, Slower is Faster

The results of Figs. 2b-d also show new interesting dynamics that were not found
in the previous study [30]. When robot connectivity is low (i.e., sporadic social
interactions) the swarm is only able to adapt when the sampling time is high
(either the number of samples s or the time between readings δs are large). This
mechanism corresponds to the SIFE [9, 25, 27, 26, 18] by which the swarm is able
to adapt at a quicker speed (i.e., within 40 minutes) when the robots perform
their task of estimating the environmental element concentration at a slower
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Fig. 2. (a,b,c) Smaller communication ranges lead to higher adaptation probability.
This effect happens only when recruitment is slow, i.e., in the top part of panels (b,c),
for high sampling times τs = s δs, which can be caused by (b) large times between
samples δs (with fixed s = 15) or (c) high numbers of samples s (with fixed δs = 1).
(b-c) When communication is limited, slower sampling time leads to higher probability
of adapting. (d) The same two effects can be observed for fixed communication range
(rc ≈ 12.5 cm for c = 3) and increasing robot density, which we control by modifying the
swarm size N in an environment with a fixed size; (e) the ODE model (Eq. (1)) predicts
results qualitatively similar to simulations without noise (g) (N = 50, κ = 0.9, k =
4× 10−6); (f) sampling times τs influence the noise, because accuracy increases when
robots collect more samples s; (g) when estimation noise is independent of sampling and
low (σ = 0) the SIFE disappears; (h) when estimation noise is independent of sampling
and high (σ = 0.1) both effects are present; if not specified, swarm size N = 50,
difficulty κ = 0.9, 30 simulations each; color-maps show probability to adapt.

pace. To study this phenomenon, we ran additional simulations. Slowing down
the sampling process has the double effect of slowing down the recruitment and of
reducing errors on the color concentration. Increasing either the sample number s
or the time between samples δs reduces the estimation noise because the robot
respectively collects more samples (see Fig. 2f) or reduces sample correlation.
Therefore, we investigate whether adaptation of sparse swarms is limited by
high noise or quick recruitment.
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In additional simulations, robots estimate color concentration (q̂b or q̂y) using
a normal distribution rather than observing tile colors. The mean of the normal
distribution is the correct concentration of the color in the environment and
we test various standard deviations σ which represent the sampling noise. By
disentangling noise from sampling time, we can study their impact separately.
Without noise (σ = 0), swarms with low communication range are able to adapt
to changes, hence sampling time has no impact on the collective ability to adapt
(see Fig. 2g). Interestingly, when noise is high (σ ∈ {0.1, 0.2}, Fig. 2h), swarms
are only able to adapt when robots take a long time to make their estimate (i.e.,
recruited robots are slow in becoming recruiters themselves). The slower a robot
starts disseminating its opinion, the faster its opinion spreads throughout the
swarm. A supposed optimal sampling time (sampling rate) might also depend
on environmental features (e.g., tile sizes).

Unfortunately, we cannot provide an explanation of this effect by theoretical
analysis as done for the LIME. The mean-field model of Eq. (1) describes a
noiseless system and cannot model the SIFE that is driven by noise. In future
work we intend to study this phenomenon using stochastic models.

6 Conclusions

We have shown that our previous results [30] generalize to a different scenario:
collective perception of dynamic environmental features. This scenario allows for
a more in-depth analysis not possible in the previous scenario. We have clarified
the relationship between recruitment speed and ability to collectively adapt to
environmental changes. The collective task that we study here is equivalent to
enabling the swarm to revise an incorrect collective decision that led the swarm
to reach a consensus for the inferior alternative and avoids lock-in states.

Our results explain the importance of considering the interplay between sam-
pling time and the communication range when designing the robot behavior as it
can have a paramount effect on the collective dynamics. Through rigorous math-
ematical and computational analysis, we explain the mechanisms that cause the
LIME, which is triggered by slow recruitment. During our investigations, we
also stumbled upon a new effect: slower individual dissemination enables faster
global agreement. We are unable, for the moment, to explain mathematically the
SIFE. However, our computational analysis confirms that the results on speed
are not confounded with estimation noise. Our future research will investigate
the mechanisms causing such unexpected dynamics which are highly relevant for
swarm robotics studies as they manifest when swarm connectivity is sparse and
robots follow a simple behavior subject to high levels of noise.
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