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Abstract. Large swarms of simple autonomous robots can be employed
to find objects clustered at random locations, and transport them to a
central depot. This solution offers system parallelisation through con-
current environment exploration and object collection by several robots,
but it also introduces the challenge of robot coordination. Inspired by
ants’ foraging behaviour, we successfully tackle robot swarm coordina-
tion through indirect stigmergic communication in the form of virtual
pheromone trails. We design and implement a robot swarm composed of
up to 100 Kilobots using the recent technology Augmented Reality for
Kilobots (ARK). Using pheromone trails, our memoryless robots redis-
cover object sources that have been located previously. The emerging col-
lective dynamics show a throughput inversely proportional to the source
distance. We assume environments with multiple sources, each providing
objects of different qualities, and we investigate how the robot swarm bal-
ances the quality-distance trade-off by using quality-sensitive pheromone
trails. To our knowledge this work represents the largest robotic exper-
iment in stigmergic foraging, and is the first complete demonstration of
ARK, showcasing the set of unique functionalities it provides.

1 Introduction

The task of collecting objects clustered at random locations and transporting
them to a central depot can benefit from a decentralised solution. In contrast
to a single large vehicle dedicated to load/unload all the objects, an interesting
solution consists in having a large number of simple autonomous vehicles, or
robots, each carrying a single object and coordinating with each other. Advan-
tages of this solution are parallel exploration of the environment and possibil-
ity to distribute the resources among various source locations. Controlling the
robot behaviour via a decentralised algorithm adds the advantage of scalabil-
ity, by which the system throughput can be calibrated with increase/removal of
robots without need for a system redesign. We study a decentralised solution
that employs a swarm of simple robots that coordinate via stigmergic communi-
cation to collect items clustered in the environment in various source areas and
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to transport them to a central depot. Exploiting nearer sources would increase
the system throughput, however objects may also have different qualities. We
study how our system can balance the trade-off between quality and distance.

The task of finding and collecting objects is known in the multi-robot lit-
erature as foraging due to the resemblance to the activity that some animals
perform when hunting food. In foraging terms, the source areas are food sources
and the depot area is the animal’s nest. We exploit this analogy with biology to
also design our solution. Inspired by foraging behaviour of ant colonies, we de-
sign a robot swarm that relies on a stigmergic communication medium similar to
the pheromone trails used by ants [60, 26, 56, 12]. Initially, scout ants randomly
search the environment, when one finds food she returns to the nest carrying a
food item and leaving a pheromone trail on her path. Through this process, ants
create pheromone trails between their nest and food sources located by scout
ants. The pheromone trails are used by other members of the colony to avoid
further random exploration and to exploit the sources that have been already
found. Similarly, we design a solution where robots start to randomly search
the environment and, later, they converge to exploiting the object sources by
relying on stigmergic communication. It has been observed that ants modulate
pheromone deposition as a function of the food source quality [60, 26, 22] (or of
the nest-site quality during nest hunting [28]). In a similar fashion, our robots de-
posit pheromone proportionally to the estimated objects’ quality. In this study,
we focus on the strategies to coordinate the robot motion leaving in abstract
terms the object load/unload issues.

Previous work investigated the use of pheromone as a form of indirect com-
munication between robots (see a review in Sec.2). Our study includes analysis
of the quality-distance trade-off which is an aspect that has not been previ-
ously explored in multi-robot foraging studies (see the problem description in
Sec.3). We implement a foraging swarm composed of simple robots (Sec.3.1),
the Kilobots [50], that operate in a virtual environment where they can de-
posit/sense virtual pheromone (Sec.3.2-3.3). In Sec.4, we evaluate the system
performance through simulations and we employ the Augmented Reality for
Kilobots (ARK) [47] system to showcase the functioning with a set of demos
with swarms up to 100 Kilobots. We finally discuss the relevance of the work for
engineering and biology in Sec.5.

2 Related Work

Several studies employed a form of stigmergy similar to the ants’ pheromone
trails to coordinate the robots’ movement. A pivotal point of these studies con-
cerns the way in which pheromone is implemented, that is how the environment
stores/updates the pheromone and how the robots deposit/sense pheromone in
the environment. We identify and discuss three main categories which we name:
beacon robots, smart-environment based, and on-board pheromone.

The first robotic systems that used pheromone communication to coordinate
the group motion allocated a set of robots as static beacon robots [19, 59, 39, 36,
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5, 25, 10]. The role of the beacons was to store and communicate pheromone levels
to robots that moved in their surroundings. The advantage of this solution is that
it can be implemented by simple robots in unknown unstructured environments.
The drawback is that part of the robots are not actively contributing to the main
task (e.g. foraging and collecting items) but need to stop and act as beacons. This
strategy may limit the functioning in vast environments. Mobile robot beacons
overcome the sacrifice of robots and allow robots to be concurrently beacons and
active foragers [53, 11]. However, the correct functioning relies on the tuning of
the swarm size and communication range as a function of the environment size.

Several studies, similarly to ours, implemented pheromone communication
through a smart environment which was capable to store virtual pheromone
information and to provide this information in real-time to the robots [54, 18, 21,
17, 1, 58]. Within this category, several studies implemented virtual pheromone
through the use of RFID tags which were deployed in the environment and stored
pheromone information [32, 33, 24, 23, 3, 29]. Our study relies on a different form
of smart environment: Kilobots perceive and deposit virtual pheromone via ARK
which has similarities with implementations of [54, 18, 17, 1]. Similarly to ARK,
robots were real-time tracked with an overhead camera, although, differently
from ARK, their robots used the light sensors to read the virtual pheromone that
was projected as light on the floor. In [58], pheromone foraging was implemented
on a Kilobot swarm using a different augmented reality system, the Kilogrid.

Researchers designed various solutions to equip robots with on-board sen-
sors and actuators customised to mark the environment and thus shifted the
pheromone mechanism from the smart-environment to the robots. In an early
work [55], the robot used a marker pen to draw lines on the floor to improve its
performance in the area coverage task. This technology had the drawback of not
allowing evaporation or diffusion of pheromone. Differently, in [45], the robots
could emit and read gas which was used to guide other robots towards a source
area. A limitation of this work was the high volatility of the gas. In [34], the
E-Puck robots were equipped with phosphorescent glowing paint to temporarily
mark the environment. Robots had to operate in a dark environment and follow
light to move between two areas. Finally, in [15, 16], robots used alcohol to mark
the environment and improve the collective performance in the foraging task.

Most work discussed in this Section, as ours does, aims to implement a robotic
system for the foraging task where robots are asked to move between two (or
more) locations (mimicking the activity of objects collection). In our study, we
include the aspect of objects’ quality that has not been taken in consideration
earlier and we analyse how the system can balance the quality-distance trade-off.
Previous work included robot swarms up to a maximum of 50 robots [58], in this
study we scale to 100 robots.

3 Problem Description

A robot swarm is asked to collect objects from n source areas deployed in a 2D
environment and transport them to a central depot area. In this study, we ignore
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the details relative to object picking, deposition, and storage; instead, we focus
on the coordinated activity of the robots to move between sources and depot
areas. Each source area Ai (i ∈ {1, 2, . . . , n}) is an infinite source of one type of
object characterised by a quality vi ∈ [0, 10]. The objective is to maximise the
throughput of objects weighted by their quality.

3.1 Robots

The swarm is completely decentralised and composed of S simple autonomous
robots that have minimal knowledge about the environment and limited sensory
and memory capabilities. We assume that the robots do not know and can-
not keep memory of the number, location, and quality of the source areas. The
robots do not communicate with each other or cannot perceive other robots and
obstacles in the environment. The robots coordinate and collaborate with each
other only through stigmergic communication, i.e. by leaving temporary traces
in the environment that can be read by other robots. The robots are equipped
with the following sensors and actuators: (i) differential drive motors to move
in the 2D environment, (ii) area sensor to detect source and depot areas when
the robot is within the area, (iii) object quality sensor to estimate the quality
of the collected object, (iv) depot direction sensor to know the relative orienta-
tion towards the depot area, (v) pheromone gland to leave in the environment
temporary traces (i.e. pheromone), and (vi) pheromone antennae to perceive the
presence of pheromone in the robot’s immediate surroundings.

3.2 The Kilobots and ARK

We implemented the robot swarm using Kilobots [50] which are inexpensive
simple robots designed to perform large-scale swarm robotic studies. The Kilobot
modulates the frequency of its two vibration motors to move on a flat surface.
The motors have been automatically calibrated via ARK [47] to move at an
average speed of ∼1 cm/s and rotate in place at ∼40

◦
/s. The robots have a limited

set of sensors and actuators therefore we relied on the ARK system to enhance
the Kilobot’s capabilities. The ARK system allows the user to equip the Kilobot
with a customised set of virtual sensors and virtual actuators to sense and modify
simulated virtual environments shared by all robots in realtime. While the ARK
system has global information on the environment and the process, its function is
limited to enhance the Kilobots’ abilities, and enrich the experiments for they can
be used within; ARK lets the Kilobots operate autonomously in a decentralised
fashion without any central control.

Via ARK, we equipped the Kilobots with the required virtual sensors and
actuators. The Kilobot periodically receives a message with the relative direction
to the depot (coded in 4 bits). When the Kilobot is within an area (either source
or depot), ARK informs the robot of the type of area (2 bits) and, if within
source, of the object’s quality (4 bits). The Kilobots, through their LED, signal
to ARK when they want to deposit a drop of pheromone in their current position.
Finally, ARK signals the Kilobot if it has pheromone within detection range
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(a) virtual antennae (b) time t (c) time t+ dt

Fig. 1. (a) The robot can perceive the presence of pheromone in its immediate sur-
rounding through virtual pheromone antennae implemented via ARK [47]. Kilobots
sense a binary value (presence/absence of pheromone) in each area. In the depicted
example, the cyan shapes show traces of virtual pheromone and the robot’s reading is
[1,0,1,0]. (b)-(c) Example of pheromone dynamics as from Eq.(1); at time t, the cell
c(i, j) has a pheromone value of 100, and at time t+dt (with dt = 0.5 s) the pheromone
evaporated at rate ε = 0.08 and diffused at rate γ = 0.01 to the four neighbouring cells.

(4 bits). The detection range of the virtual pheromone antennae is depicted in
Fig. 1(a); the robot can perceive a binary value (presence/absence of pheromone)
in four areas 45 ◦ wide in front of itself at a maximum distance of ∼3.5 cm.

The virtual environment is updated in realtime by the ARK system that
increases pheromone level when a robot deposits a pheromone drop φ = 100 and
computes evaporation and diffusion of pheromone over time. The pheromone is
stored in a matrix that discretises the 2D environment in 6.7 mm cells (i.e. 150
cells per metre). At each time-step (of length dt = 0.5 s), ARK updates each
matrix cell c(i, j) (with generic indices (i, j)) as follows:

c(i, j) = c(i, j)[1− (ε+ 4γ)dt] + γ[c(i, j ± 1) + c(i± 1, j)]dt , (1)

where parameter ε = 0.08 is the evaporation rate and γ = 0.01 the diffusion rate,
and c(i, j) ≥ 0. Fig. 1(b)-(c) show an example of the pheromone dynamics where
at time t a drop φ = 100 is deposited at cell c(i, j). Eq. (1) is a simplification of
the exponential decay observed in ant’s pheromone [8, 17].

3.3 Robot Behaviour

The proposed solution has been designed taking inspiration from the foraging
behaviour of ants that use pheromone trails to mark the environment. This form
of stigmergic communication allows the colony to limit unnecessary independent
exploration and to coordinate among peers to collectively exploit the found food
resources. The individual behaviour of the Kilobot is implemented as the finite
state machine (FSM) of Fig. 2.

At the beginning, the robots do not have information about the source lo-
cation(s) therefore they start searching the environment. Given the Kilobot’s
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Fig. 2. FSM of the individ-
ual Kilobot behaviour. The
arrows represent transitions
between states which are
represented as circles.

limited capabilities, an easy and efficient method to search an unknown envi-
ronment is through an isotropic random walk [9] which we implemented with
alternate straight motion for 7.5 s and uniformly random rotation in [-π,π]. Once
a source area Ai has been found, the robot (virtually) collects one object and car-
ries it towards the depot area. On its way towards the depot, the robot deposits
drops of pheromone with probability Pi proportional to the object quality vi,
i.e. Pi = vi/vmax. The Kilobot updates its decision to deposit pheromone every
∼2 s (which it signals to ARK via its LED), therefore a medium-quality object
will lead the robot to lay down intermittent pheromone trails. Once the Kilobot
returned to the depot, it unloads the object, turns 180 ◦, and resumes explo-
ration because it cannot store in its memory the source area location. However,
through pheromone trails the Kilobot exploits a form of collective memory which
is stored in the environment in the form of temporary stigmergic information. In
fact, once a Kilobot perceives pheromone in any of the four antennae areas (of
Fig. 1(a)), it follows the trail by moving in the direction of the triggered anten-
nae area. If more than one antennae area detect pheromone (as in the example
depicted in Fig. 1(a)), the robot selects the area in the most opposite direction
from the depot. This selection relies on the assumption that robots only deposit
pheromone in their straight path from a source area to the depot and that they
have access to the depot vector.

As in every study, we make the experiment code available online; download
it at https://github.com/DiODeProject/PheromoneKilobot.

4 Experiments and Results

We measured the system performance through accurate physics-based simula-
tion of the Kilobot swarm. We ran our simulations via ARGoS [41] which is a
simulator tailored to swarm robotics needs that allows high speed and accurate
simulation of the physics dynamics. ARGoS allows the simulation of the Kilobot
robots and the ARK system through its dedicated plugin [40]. Using ARGoS is
particularly advantageous because it allows the experimenter to use the same
identical code in simulation and on the robots.

4.1 Simulation Scenarios

We investigated the performance of a Kilobot swarm of size S ∈ {50, 100, 200} in
a 2.5 m× 2.5 m environment with a central circular depot area and n ∈ {1, 2, 4}
circular source areas with a radius of 10 cm. The source areas’ positions and ob-
ject’s qualities were varied to study the quality-distance trade-off. We varied the
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distance from the depot of the source areas di ∈ [0.5, 1.5]m and object’s quali-
ties vi ∈ [0, 10], with i ∈ n. The robots were initially deployed with (uniformly)
random position and orientation within a square 70 cm × 70 cm region centred
on the depot area. The experiments length was 20 simulated minutes. We report
the mean number of objects retrieved from each source and the mean number of
robots on each path (computed as the number of robots at a maximum distance
of 20 cm from the straight line between depot and source).

4.2 Results for Varying Distance and Quality

We investigated the effects of distance and quality through a scenario with n = 2
source areas with diametrically opposed positions. To investigate the effects of
distance, we positioned the source A1 at distance d1 = 1 m from the depot and
we varied the distance d2 ∈ [0.5, 1.5]m of source A2. Both sources have objects
with maximum quality v1 = v2 = 10. On the contrary, to investigate the effects
of quality, we set the source A1 with objects of quality v1 = 5, and we varied the
object’s quality v2 ∈ [0, 10] of source A2. Both sources were placed at distance
d1 = d2 = 1 m from the depot. Fig. 3(a)(c) show the number of items collected
from each source after 20 minutes by swarms composed of S = {50, 100, 200} sim-
ulated Kilobots for distance and quality experiments, respectively. The closer, or
better-quality, source area always has a larger number of collected object. As ex-
pected, source A1 has approximately constant throughput while the throughput
of source A2 decreases with distance d2 in Fig. 3(a), and increases with quality v2
in Fig. 3(c). Fig. 3(b) shows the allocation of robots among the two paths. Large
swarms (e.g. S = 200) have a redundancy of robots and by moving away the
source area, more robots are allocated to it. On the other hand, smaller swarms
(e.g. S = 50) reduce the robots on that path as it gets further than 1 m in
length. Similarly, Fig. 3(d) shows similar dynamics for the quality experiments.
Swarms of S = 50 robots reallocate robots to the highest quality, whereas larger
swarms of S = 200 robots saturate the source paths for qualities v2 > 3. Still
the collection is directly proportional to the object’s quality (Fig. 3(c)) because
(especially at the beginning of the experiment) the pheromone trails are more
continuous and easier to follow for areas with better quality objects.

4.3 Effects of the Swarm Size S

Fig. 4 shows the number of collected items for varying swarm size S ∈ [10, 250] in
scenarios with n = 2 or n = 4 sources with equal objects’ qualities vi = 10 and
equal distances di = 1 m, with i ∈ n. On one hand, increasing the swarm size S
results in an increasing absolute throughput of objects (blue lines on left y-axis).
On the other hand, adding more robots increases the swarm density and causes
more collisions. This physical interference among robots reduces the individual
robot efficiency (green lines on right y-axis). In fact, Kilobots do not have any
collision sensor and, in dense environments, they may lose time pushing each
other without moving. A similar trade-off between benefits and costs of adding
individuals has been already observed in collective behaviour studies [6, 31, 14].
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Fig. 3. Results from simulation experiments with S = {50, 100, 200} Kilobots and two
source areas with (a)-(b) equal quality, varying distance, and (c)-(d) equal distance,
varying quality. In (a),(c) we report the number of collected objects after 20 minutes;
in both cases, the closest, or better quality, source area has a larger number of collected
items. In (b),(d) we report the number of robots on each source path after 20 minutes.
Small swarms allocate resources differently than larger swarms. Lines are mean of 100
simulations and the lighter colour fill is the 95% confidence interval.

4.4 Quality-Distance Trade-off

As shown in Sec.4.2, our system favours nearer over further source areas, and
better over worse object qualities. Here, we explore how the system compromises
between far, better-quality sources versus nearer, lower-quality sources. We in-
vestigate two-sources scenarios with A1 fixed and varying A2. Fig. 5(a)-(b) have
d1 = 1 m, v1 = 10, v2 = 5, and varying d2 ∈ [0.5, 1.5]m. We can appreciate that
the swarm collects more objects from the lower quality area A2 than from the
better quality A1 only when the difference in distance is d1−d2 > 0.2 m. Fig. 5(b)
shows the number of robots on each path; small swarms (i.e. S = 50) always allo-
cate more resources (robots) to the better quality option, instead larger swarms
(i.e. S = 200) have such a redundancy of resources that robots can fill both paths
without need to selectively chose the best. In a similar analysis we fixed the best
quality A1 at d1 = 1.5 m, v1 = 10 and varied the quality v2 ∈ [1, 10] of the
closest area A2 in d2 = 0.75 m. Fig. 5(c) shows that large swarms are minimally
influenced by quality variation, whereas smaller swarms select the further and
best quality when the closest area has objects of poor quality v2 < 4.
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Fig. 5. Trade-off between closer, lower-quality areas and further, better-quality areas.
(a)-(b) Scenario with v1 = 10, d1 = 1 m, v2 = 5 and d2 ∈ [0.5, 1.5]m. (c) Scenario with
v1 = 10, d1 = 1.5 m, d2 = 0.75 m and v2 ∈ [1, 10]. When robots are overabundant the
trade-off is ignored, whereas smaller swarms prioritise higher quality resources. Lines
are mean of 100 simulations and the lighter colour fill is the 95% confidence interval.

4.5 Kilobot Swarm Demonstrations

The real Kilobot demonstrations are run in scenarios almost identical to the
one described in Sec.4.1 except for the environment size which is 2 m × 2 m,
and the experiment length which is 30 minutes or longer. We run four demos
D1, D2, D3, and D4. Demos D1 and D2 investigate how 50 Kilobots respond
to different qualities and distances, respectively. Demos D3 and D4 show how
the system scales with increasing number of sources (i.e. n = 4) and robots
(S = 100). Fig. 6(a) show an image of D3 where in the closeup the ARK
screen visualise the camera stream and the virtual environment information.
Fig. 6(b) shows a screenshot of D4. The video complete videos are available at
http://diode.group.shef.ac.uk/FontLlenas2018.html.

Demo D1 shows 50 Kilobots foraging from two sources placed at the same
distance d1 = d2 = 0.6 m with different qualities v1 = 10 and v2 = 5. In
contrast, demo D2 shows 50 Kilobots foraging from two sources with equal
quality v1 = v2 = 10 but placed at different distances d1 = 0.6 m and d2 = 1 m.
In both cases, the swarm response is similar to the one observed in simulation.
A noticeable difference consists in lower number of retrieved object and robots
on paths in comparison with the results of Fig. 3. This difference is due to the
large actuation noise of the Kilobots that was not included in the noise-free
simulations. Additionally, the ARGoS Kilobot plugin [40] used for this study
was not yet finely tuned on the real speed/friction of the robot and resulted in
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(a) Demo with 50 Kilobots (b) Demo with 100 Kilobots

Fig. 6. (a) Image from demo D3 with n = 4 source areas. In the closeup, the computer
screen shows the ARK’s virtual environment, on the background the Kilobots move
between virtual sources following virtual pheromone trails (the virtual environment
has been superimposed to the image). (b) Screenshot from demo D4. Full videos are
available at http://diode.group.shef.ac.uk/FontLlenas2018.html.

largely faster robots. Instead, real Kilobots spent considerable time to resolve
collisions between robots moving in opposite directions. Larger commuting time
should be balanced by more stable pheromone trails which could be achieved by
letting the robot autonomously increase the amount of pheromone deposited in
a decentralised fashion.

Demos D3 and D4 showcase the system with n = 4 sources and up to 100
Kilobots. The four sources have a set of qualities and distances that allows the
viewer to appreciate the quality-distance trade-off investigated in this study. The
considered qualities are v1 = 10, v2 = 8, v3 = 5, v4 = 3 for both demos, while
distance are d1 = d3 = 0.6 m, d2 = 0.8 m, d4 = 0.5 m for D3, and d1 = d2 =
d3 = d4 = 1 m for D4.

5 Discussion and Conclusion

Foraging is a general task that consists of the two main activities of searching
the environment to locate objects and of transporting the objects to a central
depot area. This task is widely studied in robotics because it entails activities
relevant for several robot applications [61]. Employing multi-robot systems to
solve the foraging problem has the clear advantage of offering system parallelisa-
tion through concurrent object collection by several robots. At the same time, it
introduces the challenge of robot coordination. We successfully tackle the robot
swarm coordination through stigmergic communication, although we acknowl-
edge that this is not the only solution as several previous studies explored various
alternatives, e.g.[20, 61, 2, 42, 48, 13, 51, 44]. In this study, we assume that robots
cannot directly communicate or sense each other; they are totally unaware of
the other swarm members, still they cooperate with each other through indirect
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communication. Pheromone trails allowed memoryless robots to create a form of
collective memory; robots stored information in the environment that they used
to repeatedly find previously discovered sources. The simplicity of the individual
robot behaviour allowed a direct transfer of the noise-free simulation code to the
Kilobot experiments and minimised the impact of the reality gap [27].

We successfully implemented the system on swarms of 50 and 100 Kilobots
supported by the ARK [47] system which allowed robots to operate in a virtual
environment. This work exploits the full potential of the ARK infrastructure and
showcases ARK’s unique functionalities. Even though the robot experiments in-
cluded virtual components, the physical implementation of the system has been
useful to display the solution robustness and validate the simulation results.
While we acknowledge that hybrid experiments (in between reality and simula-
tion) do not correspond to real-world applications, we still believe they represent
useful test-beds to validate and demonstrate theories within research labs.

This study included the source quality as a factor influencing the foraging
behaviour, this may relate to the priority to fetch each type of object. Further
work should better investigate how to control the balance between quality and
distance. This investigation could relate to optimal foraging theory [46, 30] which
considers the net energy intake as the energy gain discounted by the foraging
cost. This type of ‘economical’ analysis of the foraging behaviour allows determi-
nation of the best theoretical foraging strategy as a function of various compo-
nents, such as food-distance, prey-payload, and food-quality. Optimal foraging
theory has been applied to predict a large variety of foraging behaviour includ-
ing the central place foraging [38, 52, 37] investigated here. We acknowledge that
previous work has employed optimal foraging theories to engineer multi-robot
systems [57, 4, 43] and we believe that this research line should be continued.

Our results are in-line with previous investigations and show that system
performance is dependent to the strength of the positive feedback, the swarm
size, and discoverability of sources. Robots are in control of only the first factor
and it might be useful to identify if the robot could prioritise quality or dis-
tance by modulating the positive feedback strength (i.e. pheromone drop size
and deposition frequency as a function of source’s quality and discoverability).
Additionally, in our study, the robots do not perceive differences in pheromone
concentrations, in contrast, ants have a nonlinear response to pheromone that
can result in a collective decisions in favor of one food source over another [35].
We hypothesise that the swarm could achieve a similar selective allocation of all
resources to the best available source by exploiting a negative feedback in the
form of repellent pheromone [7, 49].
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